network3D 交互式网络生成

networkD3是基于D3JS的R包交互式绘图工具,用于转换R语言生成的图为交互式网页嵌套图。目前支持网络图,桑基图,树枝图等。

关于网络图的绘制,我们之前有5篇文章,可点击查看。

也可以使用此文介绍的network3D绘制交互式网络图,输入数据与Cytoscape需要的数据格式一致。

运行下方脚本,可得到这个网络图。是关于我们培训现在开通报名的课程、开过的课程和即将要开的课程。

如果需要用自己的数据,也只需替换数据部分,其它部分都是写好的通用脚本。

#install.packages("networkD3")
library("networkD3")

# 网络数据和节点属性数据以类似格式存入文本文件即可
# 网络文件有3列组成,第一列为
network <- "Src;Target;Value
Bioinfo;Biology;4
Bioinfo;Math;4
Bioinfo;Program;4
Bioinfo;NGS;4
Program;Linux;1
Program;Python;1
Program;R;1
NGS;RNAseq;1
NGS;ChIPseq;3
NGS;16Sseq;3
NGS;Metagenome;1
NGS;SingeCellSeq;3
NGS;DNAmethylseq;1
NGS;lncRNA;3
NGS;Exomeseq;1
NGS;TCGA;1
"

attribute <- "name;group;size
Bioinfo;Class;4
Biology;Class;4
Math;Class;4
Program;Class;4
NGS;Class;4
Linux;On;2
Python;Off;2
R;Off;2
RNAseq;Off;1
ChIPseq;On;1
16Sseq;On;1
Metagenome;On;1
SingeCellSeq;InPrepare;1
DNAmethylseq;InPrepare;1
lncRNA;InPrepare;1
Exomeseq;InPrepare;1
TCGA;InPrepare;1"

network <- read.table(text=network, sep=";", header=T, row.names=NULL, quote="", comment="")

network <- network[,1:3]
colnames(network) <- c("Src", "Target", "Value")

nodes <- unique(c(network$Src, network$Target))
factor_list <- sort(unique(c(levels(network$Src), levels(network$Target))))
num_list <- 0:(length(factor_list)-1)
levels(network$Src) <- num_list[factor_list %in% levels(network$Src)]
levels(network$Target) <- num_list[factor_list %in% levels(network$Target)]

attribute <- read.table(text=attribute, sep=";", header=T, row.names=NULL, quote="", comment="")
attribute <- attribute[match(factor_list, attribute$name),]
forceNetwork(Links = network, Nodes = attribute,
             width = 600, height=400,
            Source = "Src", Target = "Target",
            Value = "Value", NodeID = "name",
            Group = "group", opacity = 1, 
            legend = T, zoom = T, Nodesize = "size",
            bounded = T, opacityNoHover = 1, fontSize = 15)

桑基图

桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。

也可以视为一种层级网络图,比如展示上一篇文章中的生物信息课程网络图;也可以展示菌群随时间变化的趋势,如3分和30分文章差距在哪里文章所示哈扎人肠道菌群的季节变化规律。

下面将用2个例子,展示如何用常见网络图数据绘制桑基图。

最简单桑基图

第一列为上游,第二列为下游,第三列为联通值,值越大线越粗。如果您自己有数据,只需要替换输入部分,后面数据格式转换代码是通用的。

network <- "Src;Target;Value
Bioinfo;Biology;20
Bioinfo;Math;20
Bioinfo;Program;20
Bioinfo;NGS;20
Program;Linux;8
Program;Python;8
Program;R;6
NGS;RNAseq;1
NGS;ChIPseq;1
NGS;m16Sseq;1
NGS;Metagenome;1
NGS;SingeCellSeq;1
NGS;DNAmethylseq;1
NGS;lncRNA;1
NGS;Exomeseq;1
NGS;TCGA;1
"

network <- read.table(text=network, sep=";", header=T, row.names=NULL, quote="", comment="")

network <- network[,1:3]
colnames(network) <- c("Src", "Target", "Value")

# 转换原始数据点为0起始的一系列整数表示
factor_list <- sort(unique(c(levels(network$Src), levels(network$Target))))
num_list <- 0:(length(factor_list)-1)
levels(network$Src) <- num_list[factor_list %in% levels(network$Src)]
levels(network$Target) <- num_list[factor_list %in% levels(network$Target)]

network$Src <- as.numeric(as.character(network$Src))
network$Target <- as.numeric(as.character(network$Target))

attribute <- data.frame(name=c(factor_list))

network

Src Target Value 1 1 2 20 2 1 8 20 3 1 11 20 4 1 10 20 5 11 6 8 6 11 12 8

attribute

head(attribute[, 1]) [1] 16Sseq Bioinfo Biology ChIPseq DNAmethylseq [6] Exomeseq

sankeyNetwork(Links = network, Nodes = attribute,
 Source = "Src", Target = "Target",
 Value = "Value", NodeID = "name",
 fontSize= 12, nodeWidth = 30)

点线分组桑基图

网络数据比上一步的桑基图多一列,指示线的属性;再提供一个节点分组信息文件,获得层次更鲜明的桑基图。

只需要修改对应的数据,后面格式转换的代码通用。

network <- "Src;Target;Value;Link_Grp
Bioinfo;Biology;20;Main
Bioinfo;Math;20;Main
Bioinfo;Program;20;Main
Bioinfo;NGS;20;Main
Program;Linux;8;Sub
Program;Python;8;Sub
Program;R;6;Sub
NGS;RNAseq;1;Sub
NGS;ChIPseq;1;Sub
NGS;16Sseq;1;Sub
NGS;Metagenome;1;Sub
NGS;SingeCellSeq;1;Sub
NGS;DNAmethylseq;1;Sub
NGS;lncRNA;1;Sub
NGS;Exomeseq;1;Sub
NGS;TCGA;1;Sub
"


network <- read.table(text=network, sep=";", header=T, row.names=NULL, quote="", comment="")

network <- network[,1:4]
colnames(network) <- c("Src", "Target", "Value", "Link_Grp")

factor_list <- sort(unique(c(levels(network$Src), levels(network$Target))))
num_list <- 0:(length(factor_list)-1)
levels(network$Src) <- num_list[factor_list %in% levels(network$Src)]
levels(network$Target) <- num_list[factor_list %in% levels(network$Target)]

network$Src <- as.numeric(as.character(network$Src))
network$Target <- as.numeric(as.character(network$Target))

# 只需要前两列
attribute <- "name;group;size
Bioinfo;Class;4
Biology;Class;4
Math;Class;4
Program;Class;4
NGS;Class;4
Linux;On;2
Python;Off;2
R;Off;2
RNAseq;Off;1
ChIPseq;On;1
16Sseq;On;1
Metagenome;On;1
SingeCellSeq;InPrepare;1
DNAmethylseq;InPrepare;1
lncRNA;InPrepare;1
Exomeseq;InPrepare;1
TCGA;InPrepare;1"

attribute <- read.table(text=attribute, sep=";", header=T, row.names=NULL, quote="", comment="")
attribute <- attribute[,1:2]
colnames(attribute) <- c("name", "group")
attribute <- attribute[match(factor_list, attribute$name),]

sankeyNetwork(Links = network, Nodes = attribute,
 Source = "Src", Target = "Target",
 Value = "Value", NodeID = "name",
 NodeGroup = "group", LinkGroup = "Link_Grp",
 fontSize= 14, nodeWidth = 30)

桑基图还有类似的称为冲击图 (alluvial diagram)的展示,具体可见ggalluvial:冲击图展示组间变化、时间序列和复杂多属性alluvial diagram

说到交互式可视化,还有之前推出的:

关于R绘图, 更多文章如下:

点击阅读原文,了解更多培训信息。

CHENTONG
版权声明:本文为博主原创文章,转载请注明出处。
alipay.png WeChatPay.png

CHENTONG

CHENTONG
积微,月不胜日,时不胜月,岁不胜时。凡人好敖慢小事,大事至,然后兴之务之。如是,则常不胜夫敦比于小事者矣!何也?小事之至也数,其悬日也博,其为积也大。大事之至也希,其悬日也浅,其为积也小。故善日者王,善时者霸,补漏者危,大荒者亡!故,王者敬日,霸者敬时,仅存之国危而后戚之。亡国至亡而后知亡,至死而后知死,亡国之祸败,不可胜悔也。霸者之善著也,可以时托也。王者之功名,不可胜日志也。财物货宝以大为重,政教功名者反是,能积微者速成。诗曰:德如毛,民鲜能克举之。此之谓也。

生信宝典文章集锦

生信的作用越来越大,想学的人越来越多,不管是为了以后发展,还是为了解决眼下的问题。但生信学习不是一朝一夕就可以完成的事情,也许你可以很短时间学会一个交互式软件的操作,却不能看完程序教学视频后就直接写程序。也许你可以跟着一个测序分析流程完成操作,但不懂得背后的原理,不知道什么...… Continue reading

生信宝典文章集锦

Published on January 01, 2100

生信宝典文章集锦

Published on January 01, 2100