Basic things you should know to use s-plot

This lists the basic information for using s-plot.

Currently supported plots

Please type s-plot.sh in command line directly to have the latest list.

#### Bars
./s-plot.sh barPlot
./s-plot.sh horizontalBar
./s-plot.sh multiBarNew

#### Lines
./s-plot.sh lines
./s-plot.sh lines.2

#### Dots
./s-plot.sh scatterplot
./s-plot.sh scatterplotColor
./s-plot.sh scatterplotContour
./s-plot.sh scatterplotLotsData
./s-plot.sh scatterplotMatrix
./s-plot.sh contourPlot (unfinished)

#### Distribution
./s-plot.sh areaplot
./s-plot.sh boxplot
./s-plot.sh densityPlot
./s-plot.sh densityHistPlot
./s-plot.sh histogram
./s-plot.sh histogram.2

#### Cluster
./s-plot.sh hcluster
./s-plot.sh hclust

#### Heatmap
./s-plot.sh heatmapS
./s-plot.sh heatmapM
./s-plot.sh heatmap.2

#### Others
./s-plot.sh volcano
./s-plot.sh vennDiagram

Basic test data set

Here lists the general information of diamonds dataset that comes packaged with ggplot2.

This dataset contains ~50,000 entries. Each row is an individual diamond, and some of the variables of interest include the weight of the diamond in carats, color, clarity, and its price.

One can get, save and view the dataset using below commands. Or download data set from

> library(ggplot2)
> data(diamonds)

> head(diamonds)
  carat       cut color clarity depth table price    x    y    z
1  0.23     Ideal     E     SI2  61.5    55   326 3.95 3.98 2.43
2  0.21   Premium     E     SI1  59.8    61   326 3.89 3.84 2.31
3  0.23      Good     E     VS1  56.9    65   327 4.05 4.07 2.31
4  0.29   Premium     I     VS2  62.4    58   334 4.20 4.23 2.63
5  0.31      Good     J     SI2  63.3    58   335 4.34 4.35 2.75
6  0.24 Very Good     J    VVS2  62.8    57   336 3.94 3.96 2.48

> summary(diamonds)
     carat               cut        color        clarity          depth      
 Min.   :0.2000   Fair     : 1610   D: 6775   SI1    :13065   Min.   :43.00  
 1st Qu.:0.4000   Good     : 4906   E: 9797   VS2    :12258   1st Qu.:61.00  
 Median :0.7000   Very Good:12082   F: 9542   SI2    : 9194   Median :61.80  
 Mean   :0.7979   Premium  :13791   G:11292   VS1    : 8171   Mean   :61.75  
 3rd Qu.:1.0400   Ideal    :21551   H: 8304   VVS2   : 5066   3rd Qu.:62.50  
 Max.   :5.0100                     I: 5422   VVS1   : 3655   Max.   :79.00  
                                    J: 2808   (Other): 2531                  
     table           price             x                y         
 Min.   :43.00   Min.   :  326   Min.   : 0.000   Min.   : 0.000  
 1st Qu.:56.00   1st Qu.:  950   1st Qu.: 4.710   1st Qu.: 4.720  
 Median :57.00   Median : 2401   Median : 5.700   Median : 5.710  
 Mean   :57.46   Mean   : 3933   Mean   : 5.731   Mean   : 5.735  
 3rd Qu.:59.00   3rd Qu.: 5324   3rd Qu.: 6.540   3rd Qu.: 6.540  
 Max.   :95.00   Max.   :18823   Max.   :10.740   Max.   :58.900  
                                                                  
       z         
 Min.   : 0.000  
 1st Qu.: 2.910  
 Median : 3.530  
 Mean   : 3.539  
 3rd Qu.: 4.040  
 Max.   :31.800  
                 
#col.names=NA can generate an empty string to represent the name of first column
> write.table(diamonds, file="diamond.matrix",sep="\t", col.names=NA, row.names=T, quote=F)

#melt data set
> library(reshape2)

#Default all non-numerical column will be used as id variables
#melt will group each data value into combinations of factor variable or categorial variable.
> data_m <- melt(diamonds)
Using cut, color, clarity as id variables

> head(data_m)
        cut color clarity variable value
1     Ideal     E     SI2    carat  0.23
2   Premium     E     SI1    carat  0.21
3      Good     E     VS1    carat  0.23
4   Premium     I     VS2    carat  0.29
5      Good     J     SI2    carat  0.31
6 Very Good     J    VVS2    carat  0.24

# Extract four columns from full data sets
> diamonds_extract <- diamonds[c(1,2,3,7)]
> diamonds_extract$price <- diamonds_extract$price / 1000
> head(diamonds_extract)
  carat       cut color price
1  0.23     Ideal     E 0.326
2  0.21   Premium     E 0.326
3  0.23      Good     E 0.327
4  0.29   Premium     I 0.334
5  0.31      Good     J 0.335
6  0.24 Very Good     J 0.336
> write.table(diamonds_extract, file="diamond.extract.matrix",sep="\t", col.names=NA, row.names=T, quote=F)

> diamonds_extract_melt <- melt(diamonds_extract)
Using cut, color as id variables
> head(diamonds_extract_melt)
        cut color variable value
1     Ideal     E    carat  0.23
2   Premium     E    carat  0.21
3      Good     E    carat  0.23
4   Premium     I    carat  0.29
5      Good     J    carat  0.31
6 Very Good     J    carat  0.24

> tail(diamonds_extract_melt)
             cut color variable value
107875   Premium     D    price 2.757
107876     Ideal     D    price 2.757
107877      Good     D    price 2.757
107878 Very Good     D    price 2.757
107879   Premium     H    price 2.757
107880     Ideal     D    price 2.757

> write.table(diamonds_extract_melt, file="diamond.extract.matrix.melt",sep="\t", row.names=F, quote=F)

Basic layouts and themes

  • Legend position

    Defult, the legend is posited at the right of pictures. One can give top to -p to put the legend above pictures. Other accepted strings to -p is bottom,left,right, or c(0.008,0.8). The two element numerical vactor indicats the reltaive position of legend in pictures. 0.008 means position relative y-axis and 0.8 means position relative to x-axis. Specially, c(1,1) put legends at top-right.

  • Width, Height, Resolution, type of output pictures

    Default, width is 20 cm, one can give number to -w to change it. Height is 12 cm, give number to -u to change height. Give number to -r to alter resolution instead of using 300 as default.

    8 picture formats are supported, eps/ps, tex (pictex), pdf, jpeg, tiff, bmp, svg and wmf, with png as default. Give any mentioned string to -E to change output format.

  • Title, xlab, ylab of picture

    One can set title, xlab, ylab with -t, -x, -y.

  • Install modules

    Give TRUE to -i to install required modules for the first time. (i is shorted for install)

    Give FALSE to -e if you only want to get the R scripts instead of running them. (e is shorted for execute)

CHENTONG
版权声明:本文为博主原创文章,转载请注明出处。
alipay.png WeChatPay.png

CHENTONG

CHENTONG
积微,月不胜日,时不胜月,岁不胜时。凡人好敖慢小事,大事至,然后兴之务之。如是,则常不胜夫敦比于小事者矣!何也?小事之至也数,其悬日也博,其为积也大。大事之至也希,其悬日也浅,其为积也小。故善日者王,善时者霸,补漏者危,大荒者亡!故,王者敬日,霸者敬时,仅存之国危而后戚之。亡国至亡而后知亡,至死而后知死,亡国之祸败,不可胜悔也。霸者之善著也,可以时托也。王者之功名,不可胜日志也。财物货宝以大为重,政教功名者反是,能积微者速成。诗曰:德如毛,民鲜能克举之。此之谓也。

生信宝典文章集锦

生信的作用越来越大,想学的人越来越多,不管是为了以后发展,还是为了解决眼下的问题。但生信学习不是一朝一夕就可以完成的事情,也许你可以很短时间学会一个交互式软件的操作,却不能看完程序教学视频后就直接写程序。也许你可以跟着一个测序分析流程完成操作,但不懂得背后的原理,不知道什么...… Continue reading

生信宝典文章集锦

Published on January 01, 2100

生信宝典文章集锦

Published on January 01, 2100